Accelerated Bridge Construction
Accelerated Bridge Construction

New ideas are required to address the dual needs of:

- fast construction
- long service life
Existing Sections

Slab Bridge Sections

Voided Slab Girder

Box Girder
Existing Sections

Girder Bridge Sections

I-Girder

Bulb Tee Girder
Existing Sections

Channel and Double Stemmed Bridge Sections
Bulb-Tee bridge half diaphragms can be poured at the precast plant and joined together at the site by welding or post-tensioning.

Bulb-Tee diaphragms can also be structural steel X-bracing.
Precast Concrete Partial Depth Deck Slabs
Full Depth Bridge Deck Replacement
Case Studies

Some case studies from Puerto Rico, United States and Canada offer new ideas on techniques and construction details to achieve the goal of:

Get in.
Get out.
Stay out.
Baldorioty Bridges, San Juan, PR

- Create Expressway
 - Separate At-Grade Intersections
 - Two Intersections, Four Bridges
- 100,000 ADT
The Challenge...

- **Design & Build Four Urban Grade Separations**
 - 2 bridges – 900 ft long x 30’- 4” wide
 - 2 bridges – 700 ft long x 30’- 4” wide

- **Maintain Continuous Traffic**

- **Complete each Bridge in Less than**

 72 Hours!

Baldorioty Bridges, San Juan, PR
Concept

Precast adjacent girders

Precast cap beam

Precast pier

CIP footing
Actual site in dense urban area

Baldorioty Bridges, San Juan, PR
Precast pier cap installation

Baldorioty Bridges, San Juan, PR
Adjacent box girder installation

Baldorioty Bridges, San Juan, PR
Membrane and asphalt wearing surface

Baldorioty Bridges, San Juan, PR
Completed bridges with traffic

Baldorioty Bridges Construction Report

- 700-ft Bridge – January 1992 – 36 hours
- 900-ft Bridge – March 1992 – 21 hours
- 900-ft Bridge – May 1992 – 23 hours (rain)
- 700-ft Bridge – July 1992 – 22 hours

Ahead of its time – little interest since 1992
Cross Bay Boulevard
over the North Channel
Jamaica Bay, New York

Bridge Description

Bridge Length: 2,842 feet, 34 spans, 3 lanes each way plus bicycle lanes, sidewalks and fishing access

Components used:

- Cylinder piles
- Precast pier cap forms
- Prestressed I-Girders
- Precast diaphragm forms
- Prestressed sub-deck panels
- Precast traffic barriers
Cylinder piles

Cross Bay Boulevard over North Channel
Precast pier caps

Cross Bay Boulevard over North Channel
Precast diaphragms

Cross Bay Boulevard over North Channel
I-girder installation

Cross Bay Boulevard over North Channel
Beams in place
Precast diaphragm forms installed

Cross Bay Boulevard over North Channel
Precast deck slab placement

Cross Bay Boulevard over North Channel
Finished bridge

Cross Bay Boulevard over North Channel
Reedy Creek Bridge

Disney World Orlando, Florida

- **The Environment**
 Reedy Creek Wetlands

- **The Need**
 Provide vehicular access to the new Animal Kingdom theme park

- **The Solution**
 A precast prestressed concrete slab bridge constructed using top down construction
5 continuous segments at 200 ft = 1000 ft
Each segment = 5 spans at 40 ft
Construction Concept - Section

- Crane
• Construction Concept - Plan View
• Cross Section

Utility Bridge
• **Construction Schedule**

 - Original Design – cast-in-place construction
 - VE proposal used precast components in the same configuration
 - The precast alternate saved both cost and time

Actual (19 Months)

<table>
<thead>
<tr>
<th>Year</th>
<th>1995</th>
<th>1996</th>
<th>1997</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>12</td>
<td>4</td>
</tr>
</tbody>
</table>

- October 1995
- April 1997
Reedy Creek Bridge

Deck construction used 405 haunched slabs in two sizes
• Reedy Creek Bridge

Precast Pile Caps
• Reedy Creek Bridge
Reedy Creek Bridge
• Reedy Creek Bridge
Reedy Creek Bridge
• Reedy Creek Bridge
• Reedy Creek Bridge

Finished Bridge
Robert Moses Causeway over Great South Bay

Long Island, NY

South-bound bridge description

Bridge length: approximately 2 miles long
2 lanes wide, 153 spans

Components Used

Original Contract:
- Rehabilitate Superstructure girder and truss spans. Replace 122 stringer spans with spread P/S Box Beams. Replace deck.

VE Proposal:
- Substitute full-width quad-Tee span segments for spread box-girder spans.

Robert Moses Causeway over Great South Bay
Quad-Tee full width deck segments at the precast plant

Robert Moses Causeway over Great South Bay
Robert Moses Causeway over Great South Bay
Finished bridge

Robert Moses Causeway over Great South Bay
MOOSE CREEK BRIDGE

Total Precast Concrete Bridge Structure
Near Timmins, Ontario

Summer 2004

Owner: MTO - Engineer: Stantec Consulting
Contractor: Miller Paving - Precast: Pre-Con Inc.
Precast Elements

- Precast Superstructure:
 - 6 CPCI 1200 I-girders precast with a monolithic deck

Moose Creek Bridge
Precast Elements

- Precast Substructure:
 - 10 Abutment Elements
 - 3 Stem units per abutment
 - 2 Wingwall units per abutment

Precast Stem & Wingwall Plan (Hatched Area-CIP Concrete)

Moose Creek Bridge
Deck Girder Details

Deck Joint Details

Moose Creek Bridge
Girder/Deck Production

- Units were prestressed and conventionally reinforced - similar to typical CPCI girders...
Girder/Deck Production

- ...with the bridge deck cast monolithically on top

Wood forms were used for these prototype deck girders.
Girder/Deck Production

- The girder deck was formed with a parabolic shape in elevation and cross slope in section to account for camber and cross fall.
Stem/Wingwall Installation

- Precast was erected in two mobilizations; first - stems and wingwalls beginning July 28/04
- Stem and wingwall units were shipped flat
Stem/Wingwall Installation

- Steel piles and HSS knee bracing system were installed by the General Contractor
Stem/Wingwall Installation

- System also acted as temporary lateral support for abutment stem units
Stem/Wingwall Installation

- For stability, the outer abutment stem units were erected first...
Stem/Wingwall Installation

- Wingwall is set on a steel pile...
Stem/Wingwall Installation

- Wingwall end reinforcing is threaded through the reinforcing of the end stem units

Side View | End View
Stem/Wingwall Installation

- Installation of the stem and wingwall units took place over two days.
- Cast-in-place bearing seats and closure strips between stem units were cast by Contractor after installation complete.
- Lateral bracing was removed when concrete reached minimum strength.
Girder/Deck Installation

- The deck girders were erected 3 weeks after the stem and wingwalls, on August 19/04.
Girder/Deck Installation

- Girders were erected from a temporary bridge adjacent to the site
Girder/Deck Installation

- Middle girders were placed first and braced temporarily to the stem unit for stability before adding the permanent steel diaphragms.
Girder/Deck Installation

- Installation continued outwards until complete
- Bracing from middle unit to stem was then removed
Girder/Deck Installation

- Girder installation progressed quickly and was completed within one day
Moose Creek Bridge Opening

The bridge opened to traffic on October 27, 2004
Davis Narrows Bridge
Brooksville-Penobscot, ME

Precast Components
• 4 abutments
• 4 wing walls
• 8 box girders
• 4 approach slabs

Designer/Owner: Maine DOT
General Contractor: Reed & Reed Inc.
Precaster: Strescon Limited, Saint John, NB
Abutments and Wing Walls

Davis Narrows Bridge
Abutments and Wing Walls

Transverse Post-tensioning

Davis Narrows Bridge
Box Girder Erection

Davis Narrows Bridge
Box Girders

8 GIRDERS
27.1 m (89 ft) long
1220 mm (4 ft) wide
915 mm (3 ft) deep
Weight 45 t

Davis Narrows Bridge
Approach slab installation
Bridge Deck Membrane
Bridge Deck Paving

- Project was finished with only one month of road closure.

Davis Narrows Bridge
Projects such as the Moose Creek and Davis Narrows Bridges are part of a North American initiative - looking at ways to speed up bridge construction to minimize costs and inconvenience to the public.

ISSUES
- Collaboration
- Pricing
- Standard Sections

- Future Markets
- Constructability
- Tolerances
- Research
Conclusions

- The structural precast concrete industry has extensive knowledge and over 50 years of experience in the manufacturing, delivery and installation of precast bridge components.

- The industry is ready and willing to work with ministries of transport, bridge consultants and contractors under certain conditions:
Conclusions

- Standard tender methods are not conducive to innovative solutions. In many cases, precast manufacturers are reluctant to share their expertise and ideas with others prior to bidding.

- As voluntary alternates are not considered unless the contractor is the low bidder, new ideas and value engineering may not be worth the risk or effort. *The precaster generally has no access to the designer during the tender period to answer technical questions.*
Conclusions

- Require that precast concrete elements, manufactured in precast plants, be certified in accordance with CSA Standard A23.4 and provincial standards prior to tenders being issued.

- This will prevent the possibility of poor or unacceptable results due to unqualified fabricators.

- CPCI members have access to the latest bridge design and technology throughout North America. *In some cases the Contractors are encouraged to bid the precast work - placing the precast industry is in a situation where they are supplying their tendered number and ideas directly to their competition.*
Conclusions

- Standard bridge details should be revised or relaxed if they become barriers to innovation and new ways of construction.
- Use large precast components to speed up the construction.
- *Consult with precast manufacturers regarding constructability, shippable sizes and weights and erection equipment required to install the large pieces at the jobsite.*
Conclusions

- Industry standard tolerances are given in CSA Standard A23.4.
- Do not require unnecessary tolerances.
- Design details that can accommodate the length and out-of-square tolerances in large precast members.
- *New sections, if developed, need standard tolerances as their camber behavior is only theoretical.*
Conclusions

- Construction management contracts should be used, initially on a trial basis, to team all trades including precast contractors with forward looking engineers to find new ways to accelerate construction without sacrificing the design life of structures. *The quality control in certified precast plants can be used to everyone’s advantage.*

- If the idea is to speed up construction, put a value on the reduced time and require guaranteed schedules.
Conclusions

- Scope and contracts should be performance related and clearly outline all functional requirements of a structure.

- Don’t be afraid to try new ideas. Keep an open mind. Not everything will work as expected. Some ideas will exceed expectation.

- *There has to be a reward to promote innovation and incur risk.*
Conclusions

PROTOTYPES

- Use prototypes to try out new techniques on a smaller scale.
- Be prepared to pay a premium for these trials.
- If the prototypes are successful and/or require modifications, proper tooling up and formwork can be purchased when these prototypes become standard construction methods for future projects.
Thank you

Canadian Precast/Prestressed Concrete Institute
Web: www.cpci.ca
CPCI members: www.precastsearch.com
CPCI email: info@cpci.ca
Call toll free: 1-877-937-2724