

Canadian Precast/Prestressed Concrete Institute

Accelerated Bridge Construction

1

Accelerated Bridge Construction

New ideas are required to address the dual needs of:
fast construction
long service life

Existing Sections Slab Bridge Sections

Voided Slab Girder

Box Girder

Existing Sections Girder Bridge Sections

I-Girder

Bulb Tee Girder

Existing Sections

Channel and Double Stemmed Bridge Sections

Existing Sections Girder Diaphragms

Bulb-Tee bridge half diaphragms can be poured at the precast plant and joined together at the site by welding or posttensioning.

Bulb-Tee diaphragms can also be structural steel X-bracing.

Precast Concrete Partial Depth Deck Slabs

Full Depth Bridge Deck Replacement

REPLACEMENT IN PROGRESS WITH MAINTENANCE OF TRAFFIC

Case Studies

Some case studies from Puerto Rico, United States and Canada offer new ideas on techniques and construction details to achieve the goal of:

> Get in. Get out. Stay out.

Baldorioty Bridges, San Juan, PR

Create Expressway
 Separate At-Grade Intersections
 Two Intersections, Four Bridges
 100,000 ADT

The Challenge...

 Design & Build Four Urban Grade Separations

2 bridges – 900 ft long x 30'- 4" wide

2 bridges – 700 ft long x 30'- 4" wide

- Maintain Continuous Traffic
- Complete each Bridge in Less than

72 Hours!

Concept

Precast adjacent girders

Precast cap beam

Precast pier

CIP footing

Actual site in dense urban area

Precast pier cap installation

Adjacent box girder installation

22:54

25

Membrane and asphalt wearing surface

Completed bridges with traffic

Baldorioty Bridges Construction Report

- 700-ft Bridge January 1992 36 hours
- 900-ft Bridge March 1992 21 hours
- 900-ft Bridge May 1992 23 hours (rain)
- 700-ft Bridge July 1992 22 hours

Ahead of its time – little interest since 1992 17

Cross Bay Boulevard over the North Channel Jamaica Bay, New York Bridge Description

Bridge Length: 2,842 feet, 34 spans, 3 lanes each way plus bicycle lanes, sidewalks and fishing access

Components used:

- Cylinder piles
- Precast pier cap forms
- Prestressed I-Girders
- Precast diaphragm forms
- Prestressed sub-deck panels
- Precast traffic barriers

Cylinder piles

Precast pier caps

Precast diaphragms

Beams in place Precast diaphragm forms installed

Precast deck slab placement

Finished bridge

Disney World Orlando, Florida

• The Environment Reedy Creek Wetlands

•The Need

Provide vehicular access to the new Animal Kingdom theme park

The Solution

A precast prestressed concrete slab bridge constructed using top down construction

Reedy Creek Bridge - Plan

Construction Concept - Section

Construction Concept - Plan View

Cross Section

Construction Schedule

- Original Design cast-in-place construction
- VE proposal used precast components in the same configuration
- The precast alternate saved both cost and time

Deck construction used 405 haunched slabs in two sizes

Finished Bridge

Robert Moses Causeway over Great South Bay Long Island, NY South-bound bridge description

Bridge length: approximately 2 miles long <u>2 lanes wi</u>de, 153 spans

Components Used

Original Contract:

 Rehabilitate Superstructure girder and truss spans. Replace 122 stringer spans with spread P/S Box Beams. Replace deck.

VE Proposal:

Substitute full-width quad-Tee span segments for spread box-girder spans.

TTT I

Finished bridge

MOOSE CREEK BRIDGE Total Precast Concrete Bridge Structure Near Timmins, Ontario

Owner: MTO - Engineer: Stantec Consulting Contractor: Miller Paving - Precast: Pre-Con Inc.

Precast Elements Precast Superstructure:

6 CPCI 1200 I-girders precast with a monolithic deck

Moose Creek Bridge

Precast Substructure: 10 Abutment Elements 3 Stem units per abutment 2 Wingwall units per abutment

Precast Stem & Wingwall Plan (Hatched Area-CIP Concrete)

Moose Creek Bridge

Deck Girder Details

Deck Joint Details

Moose Creek Bridge

 Girder/Deck Production
 Units were prestressed and conventionally reinforced - similar to typical CPCI girders...

Girder/Deck Production ...with the bridge deck cast monolithically on top

Wood forms were used for these prototype deck girders

Girder/Deck Production
 The girder deck was formed with a parabolic shape in elevation and cross slope in section to account for camber and cross fall

Stem/Wingwall Installation
 Precast was erected in two mobilizations; first

 stems and wingwalls beginning July 28/04

 Stem and wingwall units were shipped flat

 Steel piles and HSS knee bracing system were installed by the General Contractor

Stem/Wingwall Installation
 System also acted as temporary lateral support for abutment stem units

Stem/Wingwall Installation
 For stability, the outer abutment stem units were erected first...

Stem/Wingwall Installation Wingwall is set on a steel pile...

 Stem/Wingwall Installation
 Wingwall end reinforcing is threaded through the reinforcing of the end stem units

Side View

End View

 Stem/Wingwall Installation
 Installation of the stem and wingwall units took place over two days

Cast-in-place bearing seats and closure strips between stem units was cast by **Contractor** after installation complete Lateral bracing was removed when concrete reached minimum strength

Girder/Deck Installation

 The deck girders were erected 3
 weeks after the stem and wingwalls, on August 19/04

Girder/Deck Installation
 Girders were erected from a temporary bridge adjacent to the site

 Girder/Deck Installation
 Middle girders were placed first and braced temporarily to the stem unit for stability before adding the permanent steel diaphragms

Girder/Deck Installation Installation continued outwards until complete

 Bracing from middle unit to stem was then removed

Girder/Deck Installation
 Girder installation progressed quickly and was completed within one day

Moose Creek Bridge Opening The bridge opened to traffic on October 27, 2004

Davis Narrows Bridge Brooksville-Penobscot, ME

Precast Components
4 abutments
4 wing walls
8 box girders

4 approach slabs

Designer/Owner: Maine DOT General Contractor: Reed & Reed Inc. Precaster: Strescon Limited, Saint John, NB

Abutments and Wing Walls

Abutments and Wing Walls

Transverse Post-tensioning

Box Girder Erection

Box Girders

8 GIRDERS 27.1 m (89 ft) long 1220 mm (4 ft) wide 915 mm (3 ft) deep Weight 45 t

Approach slab installation

Bridge Deck Membrane

Internet and the second second second

Bridge Deck Paving

Project was finished with only one month of road closure.

The Faster the Better

Projects such as the Moose Creek and Davis Narrows Bridges are part of a North American initiative - looking at ways to speed up bridge construction to minimize costs and inconvenience to the public.

<u>ISSUES</u>

- Collaboration
- Pricing
- Standard Sections

- Future Markets
- Constructability
- Tolerances
- Research

The structural precast concrete industry has extensive knowledge and over 50 years of experience in the manufacturing, delivery and installation of precast bridge components.

• The industry is ready and willing to work with ministries of transport, bridge consultants and contractors under certain conditions:

- Standard tender methods are not conducive to innovative solutions. In many cases, precast manufacturers are reluctant to share their expertise and ideas with others prior to bidding.
- As voluntary alternates are not considered unless the contractor is the low bidder, new ideas and value engineering may not be worth the risk or effort. *The precaster generally has no* access to the designer during the tender period to answer technical questions.

- Require that precast concrete elements, manufactured in precast plants, be certified in accordance with CSA Standard A23.4 and provincial standards prior to tenders being issued.
- This will prevent the possibility of poor or unacceptable results due to unqualified fabricators.

CPCI members have access to the latest bridge design and technology throughout North America. In some cases the Contractors are encouraged to bid the precast work - placing the precast industry is in a situation where they are supplying their tendered number and ideas directly to their competition. 76

- Standard bridge details should be revised or relaxed if they become barriers to innovation and new ways of construction.
- Use large precast components to speed up the construction.
- Consult with precast manufacturers regarding constructability, shippable sizes and weights and erection equipment required to install the large pieces at the jobsite.

- Industry standard tolerances are given in CSA Standard A23.4.
- Do not require unnecessary tolerances.
- Design details that can accommodate the length and out-of-square tolerances in large precast members.
- New sections, if developed, need standard tolerances as their camber behavior is only theoretical.

Construction management contracts should be used, initially on a trial basis, to team all trades including precast contractors with forward looking engineers to find new ways to accelerate construction without sacrificing the design life of structures. The quality control in certified precast plants can be used to everyone's advantage.

If the idea is to speed up construction, put a value on the reduced time and require guaranteed schedules.

Scope and contracts should be performance related and clearly outline all functional requirements of a structure.

 Don't be afraid to try new ideas. Keep an open mind. Not everything will work as expected.
 Some ideas will exceed expectation.

There has to be a reward to promote innovation and incur risk.

PROTOTYPES

- Use prototypes to try out new techniques on a smaller scale.
- Be prepared to pay a premium for these trials.
- If the prototypes are successful and/or require modifications, proper tooling up and formwork can be purchased when these prototypes become standard construction methods for future projects.

Thank you

Canadian Precast/Prestressed Concrete Institute Web: <u>www.cpci.ca</u> CPCI members: <u>www.precastsearch.com</u> CPCI email: <u>info@cpci.ca</u> Call toll free: <u>1-877-937-2724</u>